Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Microbiol ; 292: 110063, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554598

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is an ESKAPE pathogen that can quickly develop resistance to most antibiotics. This bacterium is a zoonotic pathogen that can be found in humans, animals, foods, and environmental samples, making it a One-Health concern. P. aeruginosa threatens the poultry industry in Egypt, leading to significant economic losses. However, the investigation of this bacterium using NGS technology is nearly non-existent in Egypt. In this study, 38 isolates obtained from broiler farms of the Delta region were phenotypically investigated, and their genomes were characterized using whole genome sequencing (WGS). The study found that 100% of the isolates were resistant to fosfomycin and harbored the fosA gene. They were also resistant to trimethoprim/sulfamethoxazole, although only one isolate harbored the sul1 gene. Non-susceptibility (resistant, susceptible with increased dose) of colistin was observed in all isolates. WGS analysis revealed a high level of diversity between isolates, and MLST analysis allocated the 38 P. aeruginosa isolates into 11 distinct sequence types. The most predominant sequence type was ST267, found in 13 isolates, followed by ST1395 in 8 isolates. The isolates were susceptible to almost all tested antibiotics carrying only few different antimicrobial resistance (AMR) genes. Various AMR genes that confer resistance mainly to ß-lactam, aminoglycoside, sulfonamide, and phenicol compounds were identified. Additionally, several virulence associated genes were found without any significant differences in number and distribution among isolates. The majority of the virulence genes was identified in almost all isolates. The fact that P. aeruginosa, which harbors several AMR and virulence-associated factors, is present in poultry farms is alarming and threatens public health. The misuse of antimicrobial compounds in poultry farms plays a significant role in resistance development. Thus, increasing awareness and implementing strict veterinary regulations to guide the use of veterinary antibiotics is required to reduce health and environmental risks. Further studies from a One-Health perspective using WGS are necessary to trace the potential transmission routes of resistance between animals and humans and clarify resistance mechanisms.


Assuntos
Aves Domésticas , Infecções por Pseudomonas , Humanos , Animais , Aves Domésticas/genética , Pseudomonas aeruginosa/genética , Virulência/genética , Fazendas , Tipagem de Sequências Multilocus/veterinária , Egito/epidemiologia , Galinhas/microbiologia , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma/veterinária , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/veterinária , Fatores de Virulência/genética
2.
Animals (Basel) ; 12(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35158636

RESUMO

Bovine respiratory disease (BRD) is a complex syndrome associated with high mortality in young calves and causes severe economic losses in the cattle industry worldwide. The current study investigated the prevalence and molecular characterization of common bacterial pathogens associated with respiratory symptoms in young calves from Sadat City, one of the largest industrial cities in Menoufiya Governorate, Egypt. In between December 2020 and March 2021, 200 mixed-breed young calves of 6-12 months were examined clinically. Of them, sixty (30%) calves showed signs of respiratory manifestations, such as coughing, serous to mucopurulent nasal discharges, fever, and abnormal lung sound. Deep nasal (Nasopharyngeal) swabs were collected from the affected calves for bacteriological investigation. Phenotypic characterization and identification revealed Mycoplasma bovis, Mycoplasma bovigenitalium, Pasteurella multocida, and Staphylococcus aureus in 8.33%, 5%, 5%, and 5% of the tested samples, respectively. The PCR technique using species-specific primer sets successfully amplified the target bacterial DNA in all culture-positive samples, confirming the identity of the isolated bacterial species. Partial gene sequencing of 16S rRNA gene of M. bovigenitalium, P. multocida, and S. aureus, and mb-mp 81 gene of M. bovis revealed high nucleotide similarity and genetic relationship with respective bacterial species reported from Egypt and around the world, suggesting transmission of these bacterial species between animal host species and localities. Our study highlights the four important bacterial strains associated with respiratory disorders in calves and suggests the possible spread of these bacterial pathogens across animal species and different geographic locations. Further studies using WGS and a large number of isolates are required to investigate the realistic lineage of Egyptian isolates and globally.

3.
Front Microbiol ; 12: 770813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956131

RESUMO

Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54-0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...